Data in MREIT

نویسنده

  • Chunjae Park
چکیده

Magnetic resonance electrical impedance tomography (MREIT) measures magnetic flux density signals through the use of a magnetic resonance imaging (MRI) in order to visualize the internal conductivity and/or current density. Understanding the reconstruction procedure for the internal current density, we directlymeasure the second derivative ofB z data from themeasured kspace data, from which we can avoid a tedious phase unwrapping to obtain the phase signal of B z . We determine optimal weighting factors to combine the derivatives of magnetic flux density data, ∇2B z , measured using the multi-echo train.The proposed method reconstructs the internal current density using the relationships between the induced internal current and the measured ∇2B z data. Results from a phantom experiment demonstrate that the proposed method reduces the scanning time and provides the internal current density, while suppressing the background field inhomogeneity. To implement the real experiment, we use a phantom with a saline solution including a balloon, which excludes other artifacts by any concentration gradient in the phantom.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Matlab Toolbox for Magnetic Resonance Electrical Impedance Tomography (MREIT): MREIT Toolbox

Magnetic Resonance Electrical Impedance Tomography (MREIT) is a relatively new imaging technique that allows tomographic imaging of electrical conductivity of biologically conductive objects. In this paper, we present software that has been implemented to accompany MREIT. The software offers various computational tools from preprocessing of MREIT data to reconstruction of crosssectional conduct...

متن کامل

CoReHA 2.0: A Software Package for In Vivo MREIT Experiments

Magnetic resonance electrical impedance tomography (MREIT) is a new medical imaging modality visualizing static conductivity images of electrically conducting subjects. Recently, MREIT has rapidly progressed in its theory, algorithm, and experiment technique and now reached to the stage of in vivo animal experiments. In this paper, we present a software, named CoReHA 2.0 standing for the second...

متن کامل

Magnetic resonance electrical impedance tomography (MREIT): conductivity and current density imaging

This paper reviews the latest impedance imaging technique called Magnetic Resonance Electrical Impedance Tomography (MREIT) providing information on electrical conductivity and current density distributions inside an electrically conducting domain such as the human body. The motivation for this research is explained by discussing conductivity changes related with physiological and pathological ...

متن کامل

Chemical Shift Artifact Correction in MREIT using Iterative Least Square Estimation Method

Human and animal imaging in magnetic resonance electrical impedance tomography (MREIT) demands high signal-to-noise ratio (SNR) data. We therefore perform MREIT experiments with a higher bandwidth per pixel. This leads to bigger chemical shift artifacts in MR images from fat regions. We may correct such artifacts in MREIT using a recently proposed method based on the three-point Dixon technique...

متن کامل

Incorporation of ADC Information Into SMM-based MREIT for Small Animal Conductivity Imaging

Purpose Several ex vivo studies have reported that the electrical impedance of malignancies is lower than healthy tissues and benign formations [Malich et al, Eur Radiol 10:1555-61 (2000)]. Therefore, in vivo conductivity imaging may have potential applications in tumor diagnosis. Magnetic resonance electrical impedance tomography (MREIT) is an emerging, non-invasive conductivity imaging modali...

متن کامل

Magnetic Resonance Electrical Impedance Tomography (MREIT) at 11 Tesla Field Strength: Preliminary Experimental Study

We present a preliminary experimental study of electrical conductivity imaging using an 11T Magnetic Resonance Electrical Impedance Tomography (MREIT) system. The primary goal was to evaluate the noise level in measured magnetic flux density data subject to an injection current. We found that the noise level from the 11T system is about 0.2nT whereas it is about 1.4nT using a 3T system. MREIT c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014